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Abstract 

Calculating the number of spanning trees of a graph G by the determinant of 

Laplacian matrix is tedious and impractical. In this paper, we propose the 

combinatorial method to facilitate the calculation of the number of spanning trees for 

some graphs. In particular, we derive the explicit formulas for the triangular snake 

( k -snake), double triangular snake (2 k -snake) and the total graph of path Pn ( 

T(Pn) ). Finally, we derive the explicit formulas for the subdivision of k -snake, 

2 k -snake and T(Pn). 
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1. Introduction: 

We deal with simple and finite undirected graphs G = (V, E), where V is the vertex set 

and E is the edge set. For a graph G, a spanning tree in G is a tree which has the same 

vertex set of G. The number of spanning trees in G, also called, the complexity of the 

graph, denoted by ( )G . 

 The number of spanning trees ( )G in graphs (networks) is an important invariant. 

The evaluation of this number and analyzing its behavior is not only interesting from 

a mathematical (computational) perspective, but also, it is an important measure of 

reliability of a network and designing electrical circuits. Some computationally hard 

problems such as the travelling salesman problem can be solved approximately by 
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using spanning trees. There two methods for counting the number of spanning trees in 

graphs, algebraic and combinatorial methods.  

First, Algebraic graph theory is a branch of mathematics that studies graphs by 

using algebraic properties of associated matrices.   

In 1847, a classical result of Kirchhoff [1] can be used to determine the number of 

spanning trees for G = (V, E). Let V ={v1, v2,…,vn}, then the Kirchhoff matrix H 

defined as n×n characteristic matrix H = D-A, where D is the diagonal matrix of the 

degrees of G and A is the adjacency matrix of G, H = [aij] defined as follows:  
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All of co-factors of H are equal to t(G).  

There are other methods for calculating t(G). Let 1 2 ... p     denote the eigenvalues 

of H matrix of a p point graph. Then it is easily shown that 0p  . In 1974, Kelmans 

and Chelnokov [2] shown that, 
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  . The formula for the number of 

spanning trees in a d-regular graph G can be expressed as 
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  where 0 1 2 1, ,..., p     are the eigenvalues of the 

corresponding adjacency matrix of the graph. However, for a few special families of 

graphs there exist simple formulas that make it much easier to calculate and determine 

the number of corresponding spanning trees especially when these numbers are very 

large. One of the first such results is due to Cayley [3] who showed that complete 

graph on n vertices, Kn has n
n-2 

spanning trees that he showed 
2( ) n

nK n  , 2n  . In 

2003, Clark proved that 1 1

,( ) q p

p qK p q   , , 1p q  , where Kp,q is the complete 

bipartite graph with bipartite sets containing p and q vertices, respectively. Another 

result is due to Guy [5] who derived a formula for the wheel on n+1vertices, Wn+1, 

which is formed from a cycle Cn on n vertices by adding a vertex adjacent to every 

vertex of Cn. In particular, he showed that  1

3 5 3 5
( ) ( ) ( ) 2
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n n

nt W 

 
    for 

3n  . Sedlacek [6] also later derived a formula for the number of spanning trees in a 

Mobius ladder. The Mobius ladder Mn is formed from cycle C2n on 2n vertices labeled 
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v1, v2,…,v2n by adding edge vivi+n for every vertex vi where 2n  . The number of 

spanning trees in Mn is given by ( ) [(2 3) (2 3) 2]
2

n n

n

n
t M       for 2n  . 

Boesch and Bogdanowicz [7] introduced another class of graphs for which an explicit 

formula has been derived is based on a prism. Let the vertices of two disjoint and 

length cycles be labeled v1, v2,…,vn in one cycle and w1, w2,…wn in the other. The 

prism Rn is defined as the graph obtained by adding to these two cycles all edges of 

the form vi,wi. The number of spanning trees in Rn is given by the following formula 

[(2 3) (2 3) 2]
2

n nn
    . 

Second, the basic combinatorial idea, Feussner’s recursive formula [8], for 

counting ( )G in a graph G is quite intuitive. The combinatorial method was used 

because of, for a large graph, evaluating the relevant determinant is computationally 

intractable. Wherefore, many works derive formulas to calculate the complexity for 

some classes of graphs. Bogdanowicz [9] derive the explicit formula ( )nF ; the 

number of spanning trees in nF . Modabish and El Marraki investigated the number of 

spanning trees in the star flower planar graph [10].  

In this paper, we consider the combinatorial method for finding the number of 

spanning trees in Cyclic Snakes Networks. In this paper, we derive the explicit 

formulas for the triangular snake ( k -snake), double triangular snake (2 k -snake) 

and the total graph of path Pn ( T(Pn) ). Finally, we derive the explicit formulas for the 

subdivision of k -snake, 2 k -snake . 

2. Applications for the Number of spanning trees. 

The number of spanning trees in a graph (network) is an important, well studied 

quantity [11]. As well as being of combinatorial interest, several application uses, 

mentioned in the following, are adduced in [12]. 

1. Kirchhoff’s laws, well known as Matrix Tree Theorem, provide an effective   

     method for designing electrical circuits, which are enormously useful in the     

     analysis and synthesis of networks. 

2-Suppose we are given a network of communication lines, which can break. The    

    probability of a single line breaking is 1−p. It is necessary to estimate the reliability    

    of such a network. If the reliability is the probability of connectedness of the     
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    network, P, then 

1

(1 )
m

k m k

k

k n

P A p p 

 

    

where n is the number of vertices, m the number of edges, of the graph; Ak is the 

number of connected subgraphs with n vertices and k edges. It is clear that, if the 

reliability of each line is small, then  

1 1

-1  A (1 )n m n

nP p p     

where  An−1 is the number of spanning trees of the graph. 

Thus, with low reliability of each of the line, the network’s reliability is determined, 

basically, by the number of spanning trees of the network. 

3. In building a maser, one must investigate the possible particle transitions. For this, 

one constructs a graph in which the vertices correspond to energy levels and edges to 

possible particle transitions. Then for the analysis of the maser’s energetics, it turns 

out to be very useful to know the number of spanning trees in the corresponding 

graph. 

3. Preliminary Notes 

The combinatorial method involves the operation of contraction of an edge. An edge e 

of a graph G is said to be contracted if it is deleted and its ends are identified. The 

resulting graph is denoted by G.e. Also we denote by G − e the graph obtained from 

G by deleting the edge e. 

Theorem 3.1 [13] Let G be a planar graph (multiple edges are allowed in here). 

Then for any edge e 

(G) = (G - e) + (G.e)    

 

Remark 1: If G' is obtained from G by removing all the pendant edges of G, then 

'( ) ( )G G  . 

Remark 2: If G' is obtained from G by removing all the loops of G, then 

'( ) ( )G G  . 

Remark 3: If G' is obtained from G by removing one or more than one multiple 

edges of G, then '( ) ( )G G  . 
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Definition [14]: 

 A triangular snake (or k -snake) is a connected graph in which all blocks are 

triangles and the block-cut-point graph is a path. 

Definition: 

A double triangular snake is a graph formed by two triangular snake having a 

common path. The double triangular snake is denoted by 2 k - snake.   

Definition [15]: 

The total graph of a graph G is the graph whose vertex set is ( ) ( )V G E G  and two 

vertices are adjacent whenever they are either adjacent or incident in G. The total 

graph of G denoted by T(G). 

Definition: 

The subdivision of a graph G means the graph obtained by subdividing every edge of 

G exactly once and denoted by S(G). 

Illustration: 

 

                                                
       k -snake                      2 k -snake                 T(P3)                      S( T(P3) ) 

 

4. The Main Results: 

Theorem1: The number of spanning trees of the triangular snake graph k -snake 

satisfies the following recursive relation: 

k k-1( -  )= 3 ( -  )snake snake    

Proof:  

( -  )=k snake     )  ) =   ( ) +  ( ) =  

2  )  ) +   ( ) =  3 ( ) = -13 ( -  )k snake         ■ 
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Theorem2: The number of spanning trees of the double triangular snake graph k -

snake satisfies the following recursive relation:  k k-1( 2 -  )= 8 ( 2 -  )snake snake    

Proof:  

k( 2 -  )snake  = ) )= ( ) +  ) ) 

= 2 ( ) + ( ( = 2 ( ) + 3 ( 

( = 2 ( )+3 ( )+3 ( ) = 

8 ( ) = k-18 ( 2 -  )snake                                                                        ■ 

Theorem3: The number of spanning trees of the total graph of path Pn satisfies the 

following recursive relation: 

1 2( ( ) )= 7 ( ( ) )- ( ( ) )n n nT P T P T P     

Proof:  

( ( ) )nT P =  ( ) =  ( ) +  

 ( ) = 2 ( ) +  

 ( ) = 2 ( )  

+3 ( ) = 5 ( ) +  

3 ( ) = 5 ( ) +  
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3 ( ) - 3 ( ) = 7 ( ) 

+   (  ) - 2 ( ) =7 ( ) + 

+   (  ) - 2 ( )= 1 27 ( ( ) )- ( ( ) )n nT P T P   + 

 ) ) -  ) ) = 1 27 ( ( ) )- ( ( ) )n nT P T P           ■ 

Theorem4: The number of spanning trees of the subdivision of triangular snake graph 

k -snake satisfies the following recursive relation: 

k k-1( S( - ) )= 6 ( S( -  ))snake snake    

Proof:  

k( S( - ) )=snake     ( ) =  ( ) +  

 ( ) = 2 ( )  

+ ( ) = 3 ( ) +  

 ( ) = 4 ( ) +  

 ( ) = 6 ( ) = k-16 (S( - ))snake   ■ 

Corollary 5 : The number of spanning trees of the subdivision of triangular snake 

graph k -snake is equal to : 6k
 where k is the number of blocks of k -snake. 

Theorem 6: The number of spanning trees of the subdivision of double triangular 

snake graph k -snake satisfies the following recursive relation: 
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k k-1( S( - ) )= 32 ( S( - ) )snake snake    

 

Proof:  

k(S( - ))snake  = ) ) = ( (+ 

 ) (= 2 ) ) + ) ( = 

2 ) ) + ( (+  ( (= 

2 ) ) +  

2 ( ( +  ) (      -------------------------------------  ( 1)  

Since  ( ( = k-16 ( S( - ) )snake   ---------------------------------------(2)          

Since  ) ) = k-16 ( S( - ) )snake   ________________________(3) 

Since ) ) = k-18 ( S( - ) )snake  __________________________(4) 

From 1, 2, 3 and 4 we have k k-1( S( - ) )= 32 ( S( - ) )snake snake   .                          ■ 
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Corollary 7 : The number of spanning trees of the subdivision of double triangular 

snake graph k -snake is equal to : (32)k  where k is the number of blocks of k -

snake. 

 

5. Conclusion 

The number of spanning trees of a graph G is the total number of distinct spanning 

subgraphs of G that are trees (tree that visiting all the vertices of the graph G). 

Calculating the number of spanning trees of a graph G by the determinant of 

Laplacian matrix is tedious and impractical. In this paper, we proposed the 

combinatorial method to facilitate the calculation of the number of spanning trees for 

some graphs. In particular, we derived the explicit formulas for the triangular snake 

( k -snake), double triangular snake (2 k -snake) and the total graph of path Pn ( 

T(Pn) ). Finally, we derived the explicit formulas for the subdivision of k -snake, 

2 k -snake . 

 

6. ACKNOWLEDGMENTS  

We would like to thank Prof. Mohamed Amin for valuable comments and corrections. 

 

 

REFERENCES 

 

[1] Kirchhoff, 1847. Uber die Auflosung der Gleichungen, auf welche man beider 

Untersuchung der Linearen Verteilung galvanischer Strme gefhrt wird. Ann. 

Phys. Chem., 72: 497-508. 

 

[2] Kelmans, A.K. and V.M. Chelnokov, 1974 A certain polynomial of a graph and 

graphs with an extremal number of trees. J. Comb. Theory, 16: 197-214. 

DOI: 10.1016/0095-8956(74)90065-3 

 

[3] Cayley, G.A., 1889. A theorm on trees. Quart. J. Math., 23: 276-378.  

 

[4] Clark, L., 2003. On the enumeration of multipartite spanning trees of the complete 

graph. Bull. ICA, 38: 50-60. 

 

[5] Guy, R.K., 1970. Combinatorial Structures and their Applications. 1st Edn., 

Gordon and Breach, New York, pp: 508. 

 

[6] Sedlacek, J., 1970. Mathematics (Geometry and Graph theory) (Chech), 

University of Karlova. 

 



10 

 

[7] Boesch, F.T. and Z.R. Bogdanowicz, 1987. The number of spanning trees in a     

      Prism. Int. J. Comput. Math., 21: 229-243. DOI: 10.1080/00207168708803568 

      

[8] W. Feussner, Zur Berechnung der Stromstarke in netzformigen Letern, Ann. 

Phys., 15 (1904), 385 - 394. 

 

[9] R. Zbigniew Bogdanowicz, (2008) " Formulas for the Number of Spanning Trees 

in a Fan", Applied Mathematical Sciences, Vol. 2, no. 16, 781 – 786. 

 

[10] A. Modabish, M. El Marraki, Counting the number of spanning trees in the star 

flower planar map, Applied Mathematical Sciences, Vol. 6, 2012, no. 49, 2411 - 

2418. 

[11] D. Cvetkovič, M. Doob and H. Sachs, Spectra of Graphs: Theory and     

        Applications, Third Edition, Johann Ambrosius Barth, Heidelberg, 1995. 

 

[12] A. K. Kel’mans, The number of trees in a graph I, Automat. Remote Control, 26   

        (1965), 2118 - 2129. 
 

[13] W.Feussner (1994), Zur berechnumg der stromstrrke in netzfrmigen letern.       

      Ann.phys. 15, 385-394. 

[14] A. Rosa (1967), Cyclic steiner Triple Systems and Labelings of Triangular Cacti,   

       Scientia, 5, 87-95. 

[15] S.K. Vaidya and D. D. Bantva (2013), Radio Number for Total Graph of Paths,      

       Hindawy Publishing Corporation, ISRN Combinatorics, 1-6. 

 


